o

Least Authority

PRIVACY MATTERS

Smart Contracts
Security Audit Report

Hilter

Final Audit Report: 19 July 2025



Table of Contents

Overview

Background
Project Dates
Review Team
Coverage
Target Code and Revision
Supporting Documentation
Areas of Concern
Findings
General Comments
Code Quality
Documentation
Scope
Specific Issues & Suggestions

Issue A: Missing Check for the Distributor Address Can Lead to the Loss of Access Control for the
Respective Token

Issue B: ETH Can Be Locked in the Contract Indefinitely

Issue C: Updates Between Non-Zero Allowances Can Result in Exploits
Suggestions

Suggestion 1: Add Check for Out-Of-Bound Values in getimplementation

Suggestion 2: Add Check To Validate the Parameters of addTrustedAddress

Suggestion 3: Resolve TODOs in Codebase

Suggestion 4: Enable Two-Step Ownership Transfers

Suggestion 5: Update Implementation To Make It Consistent With the Specification Mentioned in
the Comment

Suggestion 6: Remove Unnecessary Modifier
About Least Authority

Our Methodology

Security Audit Report | Smart Contracts | Hilter 1
19 July 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.



Overview
Background

Hilter has requested that Least Authority perform a security audit of their Smart Contracts.

Project Dates

June 21, 2025 - July 5, 2025: Initial Code Review (Completed)
July 7, 2025: Delivery of Initial Audit Report (Completed)

July 17: Verification Review (Completed)

July 19: Delivery of Final Audit Report (Completed)

Review Team

e Nathan Ginnever, Security Researcher and Engineer
e Mukesh Jaiswal, Security Researcher and Engineer
e Steven Jung, Security Researcher and Engineer

Coverage

Target Code and Revision

For this audit, we performed research, investigation, and review of the Smart Contracts followed by
issuereporting, along with mitigation and remediation instructions as outlined in this report.

The following code repository is considered in scope for the review:
e Interchain-token-service:
https://qgitlab.com/hilterltd-group/interchain-token-service
o Specifically:
https://gitlab.com/hilterltd-group/interchain-token-service/tree/feat/get-chain-name

Specifically, we examined the Git revisions for our initial review:

e [nitial commit: f719f44bd278ba26f38f30664aedc766a37f586
e Updated commit: 6f7b4eb3d4aaab9d8fe6ad726a3d9a86446ce902

For the verification, we examined the Git revision:

e cab1bb3b3e220a368bc932ba7ffodfb5f5e8¢c872

All file references in this document use Unix-style paths relative to the project’s root directory.
In addition, any dependency and third-party code, unless specifically mentioned as in scope,

were considered out of scope for this review.

Supporting Documentation

The following documentation was available to the review team:

Security Audit Report | Smart Contracts | Hilter
19 July 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.



e Hilter:
https://hilter.com

Areas of Concern

Our investigation focused on the following areas:

Correctness of the implementation;

Adversarial actions and other attacks on the network;

Potential misuse and gaming of the smart contracts;

Attacks that impacts funds, such as the draining or manipulation of funds;
Mismanagement of funds via transactions;

Denial of Service (DoS) and other security exploits that would impact the intended use of the
smart contracts or disrupt their execution;

Vulnerabilities in the smart contracts’ code;

Protection against malicious attacks and other ways to exploit the smart contracts;
Inappropriate permissions and excess authority;

Data privacy, data leaking, and information integrity; and

Anything else as identified during the initial analysis phase.

Findings

General Comments

Our team performed a security review of the Hilter Smart Contracts, specifically the Interchain Token
Service functionality. Our team found that the Hilter team has taken security into consideration in the
design and implementation as demonstrated by appropriate permissions on sensitive functions, a failsafe
for pausing the system, and attention to details, such as using the SafeTransfer token methods.
However, our team identified implementation Issues that can lead to security vulnerabilities, as well as
suggestions that include adherence to best practice recommendations and

efficiency optimizations.

Code Quality

Our team performed a manual review of the smart contracts and found the code to be very well-organized
and utilizing interfaces and inheritance efficiently. The codebase adheres to Solidity standards and best
practices by implementing modern error handling, appropriate re-entrancy safeguards, and gas
optimizations.

Tests

The Hilter Smart Contracts are sufficiently tested.

Documentation

The project documentation available for this review was sufficient and provided an accurate description of
the protocol. Furthermore, every function in the codebase is well-commented according to NatSpec
guidelines and includes relevant descriptions that facilitate understanding the code.

Scope

The scope of this review was sufficient and included all security-critical components.

Security Audit Report | Smart Contracts | Hilter 3
19 July 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.



Specific Issues & Suggestions

We list the issues and suggestions found during the review, in the order we reported them. In most cases,
remediation of an issue is preferable, but mitigation is suggested as another option for cases where a
trade-off could be required.

ISSUE / SUGGESTION STATUS

Issue A: Missing Check for the Distributor Address Can Lead to the Loss of Resolved
Access Control for the Respective Token

Issue B: ETH Can Be Locked in the Contract Indefinitely Resolved
| : Between Non-Zero Allowan n Result in Exploi Resolved
Suggestion 1: Add Check for Out-Of-Bond Values in getimplementation Resolved

Suggestion 2: Add Check To Validate the Parameters of addTrustedAddress Resolved

Suggestion 3: Resolve TODOs in Codebase Partially resolved
Suggestion 4: Enable Two-Step Ownership Transfers Resolved
Suggestion 5: Update Implementation To Make It Consistent With the Partially resolved

Specification Mentioned in the Comment

Suggestion 6: Remove Unnecessary Modifier Resolved

Issue A: Missing Check for the Distributor Address Can Lead to the Loss of
Access Control for the Respective Token

Location

contracts/interchain-token-service/InterchainTokenService.sol#l 612

Synopsis

In the function _processDeployStandardizedTokenAndManagerPayload, the distributor address
is obtained, in bytes, through the function distributorBytes, after which it is converted to address.
There is no check verifying that it is not address(0). Only the distributorBytes length is checked,
which is not sufficient because the following address can be passed:

address(0) {"0x0000000000000000000000000000000000000000" }

Impact
If the function distributorBytes is an address(0), then access control for that token can be lost.

Preconditions
This Issue is possible if the value of distributorBytesis:

0x0000000000000000000000000000000000000000.

Security Audit Report | Smart Contracts | Hilter 4
19 July 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.



Feasibility
Low.

Remediation
We recommend adding an address(0) check after obtaining the distributor address from the
functiondistributerBytes.

Verification

Resolved

Issue B: ETH Can Be Locked in the Contract Indefinitely

Location
contracts/utils/StandardizedTokenDeployer.sol#L45-1L54

contracts/utils/TokenManagerDeployer.sol#L33

Synopsis
These functions are defined as payable. However, it is not possible to withdraw the ETH in the contracts

Impact

This Issue could result in ETH being locked in the contract for an indefinite amount of time.

Preconditions

The Issue is likely if these payable functions are called with Eth(msg.value > 0).
Mitigation

We recommend updating the functions to nonpayable.

Verification

Resolved.

Issue C: Updates Between Non-Zero Allowances Can Result in Exploits

Location
contracts/token-implementations/ERC20.s0l#L61

Synopsis
The process by which a user updates from one non-zero allowance to another can be susceptible to
exploits. When user A approves the transfer of N tokens to user B, and user A updates the allowance to

Musing the approve function, user B can deploy the approve transaction in the mempool and take
M+N tokens by transferring N tokens just before the second approval with a higher gas price, and
transferring M tokens after the second approval.

Impact
In this case, this Issue could result in user B stealing user A’'s M tokens.

Security Audit Report | Smart Contracts | Hilter 5
19 July 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.



Remediation

We recommend that the Hilter team prevent updates between non-zero allowances. The userplanning

to update the approval from one non-zero allowance to another must first set the allowance tozero.
As aresult, the user can detect if the allowance was used by the approved user before the new
approval. For example:

function approve(address spender, uint256 amount) external virtual
override returns (bool) {

require(!((amount!= @) && (allowance[msg.sender][_spender] != 0@
))); _approve(msg.sender, spender, amount);

return true;

Verification

Resolved.

Suggestions

Suggestion 1: Add Check for Out-Of-Bound Values in getimplementation

Location
contracts/interchain-token-service/InterchainTokenService.sol#L210

Synopsis

In the getImplementation function, if the input value is beyond the range of TokenManagerType
,address(0) is returned. As a result, when it is called in TokenMangerProxy, the
impl.delegatecall function fails.

Mitigation
We recommend adding the revert function when the input value is not in the range
of TokenManagerType

Status

The Hilter team has added a condition, which reverts when the input value is beyond therange of
TokenManagerType, as follows:

if (tokenManagerType > uint256(type(TokenManagerType).max)) revert
InvalidImplementation();

Verification

Resolved

Security Audit Report | Smart Contracts | Hilter
19 July 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.



Suggestion 2: Add Check To Validate the Parameters of
addTrustedAddress

Location

contracts/linker-router/LinkerRouter.sol#L77

Synopsis

The function addTrustedAddress only checks the parameter length rather than the actual value of the
chain and address, due to which bytes32(0) and address(8) can be passed. Consequently, this can
result in the storing of address (@) for the mapping of remoteAddresses[chain].

Mitigation

We recommend adding checks for the parameter of the function addTrustedAddress, such that
bytes32(0) and address(0) can be prevented from being set for the chain and interchain token
addressrespectively.

Verification

Resolved.

Suggestion 3: Resolve TODOs in Codebase

Synopsis

There are unresolved TODO items in the code comments of the in-scope implementation, which may lead
to a lack of clarity and cause confusion about its completion. Resolving TODOs prior to a comprehensive
security audit of the code allows security researchers to better understand the full intended functionality

of the code, indicates completion, and increases readability and comprehension.

Mitigation
We recommend that TODOs be resolved or removed from the codebase.

Status

At the time of the verification, our team found that pending TODO's still persist in the InterTokenService
smart contract.

Verification

Partially resolved.

Security Audit Report | Smart Contracts | Hilter 7
19 July 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.



Suggestion 4: Enable Two-Step Ownership Transfers

Location
contracts/utils/Adminable.sol#L53

Synopsis
The current method for changing admins only allows for a single transaction swap, which can lead to
accidental changes to accounts that are not controlled by an admin.

Mitigation
We recommend allowing the option to propose and accept changes to important roles, before removing
the old account, to ensure that the new account is controlled as expected.

Status

The Hilter team has created a custom implementation that allows for both single and two-step
ownership transfers.

Verification

Resolved.

Suggestion 5: Update Implementation To Make It Consistent With the
Specification Mentioned in the Comment

Location
contracts/utils/ExpressCallHandler.sol#L15

contracts/interchain-token-service/InterchainTokenService.sol#L65

Synopsis

The values of PREFIX_EXPRESS_RECEIVE_TOKEN, PREFIX_EXPRESS_RECEIVE_TOKEN_WITH_DATA,
and contractId are not calculated as mentioned in the comment. These values are calculated after the
subtraction of a constant value from the respective hashes.

Mitigation

We recommend calculating the values of PREFIX_EXPRESS_RECEIVE_TOKEN,
PREFIX_EXPRESS_RECEIVE_TOKEN_WITH_DATA, and ContractId as mentioned in the comment to
make the implementation consistent with the specification mentioned in the comment.

Status

The Hilter team has set the value of ContractId to-
keccak256('interchain-token-service'), but the value of PREFIX_EXPRESS_RECEIVE_TOKEN
is different from the value mentioned in comment, as illustrated below:

The value of the PREFIX_EXPRESS_RECEIVE_TOKEN is:
0x67c7b41c1cb0375e36084c4ec399d005168e83425Fa471b9224f6115af865612

However, the value of uint256 (keccak256 ( 'prefix-express-give-token')) is:
0x67c7b41¢c1cb08375e36084 c4ec399d005168 83425 fa471b9224 6115 af
865612

Security Audit Report | Smart Contracts | Hilter 8
19 July 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.



Verification

Partially Resolved.

Suggestion 6: Remove Unnecessary Modifier

Location

contracts/interchain-token-service/InterchainTokenService.sol#L411

Synopsis

The function expressReceiveToken does not have any trust assumptions since it is a helper function
that forwards tokens from the relayer. Given that there is no attack surface for this functionality, there is
no need to have the pause failsafe modifying it.

Mitigation
We recommend removing the unnecessary modifier.

Status
The Hilter team has removed the modifier as suggested.

Verification

Resolved.

Security Audit Report | Smart Contracts | Hilter
19 July 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.



About Least Authority

We believe that people have a fundamental right to privacy and that the use of secure solutions enables
people to more freely use the Internet and other connected technologies. We provide security consulting
services to help others make their solutions more resistant to unauthorized access to data and
unintended manipulation of the system. We support teams from the design phase through the production
launch and after.

The Least Authority team has skills for reviewing code in multiple Languages, such as C, C++, Python,
Haskell, Rust, Node.js, Solidity, Go, JavaScript, ZoKrates, and circom, for common security vulnerabilities
and specific attack vectors. The team has reviewed implementations of cryptographic protocols and
distributed system architecture in cryptocurrency, blockchains, payments, smart contracts,
zero-knowledge protocols, and consensus protocols. Additionally, the team can utilize various tools to
scan code and networks and build custom tools as necessary.

Least Authority was formed in 2011 to create and further empower freedom-compatible technologies. We
moved the company to Berlin in 2016 and continue to expand our efforts. We are an international team
that believes we can have a significant impact on the world by being transparent and open about the work
we do.

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort. The goals of our
security audits are to improve the quality of systems we review and aim for sufficient remediation to help
protect users. The following is the methodology we use in our security audit process.

Manual Code Review

In manually reviewing all of the code, we look for any potential issues with code logic, error handling,
protocol and header parsing, cryptographic errors, and random number generators. We also watch for
areas where more defensive programming could reduce the risk of future mistakes and speed up future
audits. Although our primary focus is on the in-scope code, we examine dependency code and behavior
when it is relevant to a particular line of investigation.

Vulnerability Analysis

Our audit techniques include manual code analysis, user interface interaction, and whitebox penetration
testing. We look at the project's website to get a high level understanding of what functionality the
software under review provides. We then meet with the developers to gain an appreciation of their vision
of the software. We install and use the relevant software, exploring the user interactions and roles. As we
do this, we brainstorm threat models and attack surfaces. We read design documentation, review other
audit results, search for similar projects, examine source code dependencies, skim open issue tickets, and
generally investigate details other than the implementation. We hypothesize what vulnerabilities may be
present and possibly resulting in Issue entries, then for each, we follow the following Issue Investigation
and Remediation process.

Security Audit Report | Smart Contracts | Hilter 10
19 July 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.



Documenting Results

We follow a conservative and transparent process for analyzing potential security vulnerabilities and
seeing them through successful remediation. Whenever a potential issue is discovered, we immediately
create an Issue entry for it in this document, even before having verified the feasibility and impact of the
issue. This process is conservative because we document our suspicions early even if they are later
shown to not represent exploitable vulnerabilities. We generally follow a process of first documenting the
suspicion with unresolved questions, then confirming the issue through code analysis, live
experimentation, or automated tests. Code analysis is the most tentative, and we strive to provide test
code, log captures, or screenshots demonstrating our confirmation. After this, we analyze the feasibility of
an attack in a live system.

Suggested Solutions

We search for immediate and comprehensive mitigations that live deployments can take, and finally, we
suggest the requirements for remediation engineering for future releases. The mitigation and remediation
recommendations should be scrutinized by the developers and deployment engineers, and successful
mitigation and remediation is an ongoing collaborative process after we deliver our Initial Audit Report,
and before we perform a verification review.

Before our report, including any details about our findings and the solutions are shared, we like to work
with your team to find reasonable outcomes that can be addressed as soon as possible without an overly
negative impact on pre-existing plans. Although the handling of issues must be done on a case-by-case
basis, we always like to agree on a timeline for a resolution that balances the impact on the users and the
needs of your project team.

Resolutions & Publishing

Once the findings are comprehensively addressed, we complete a verification review to assess that the
issues and suggestions are sufficiently addressed. When this analysis is completed, we update the report
and provide a Final Audit Report that can be published in whole. If there are critical unaddressed issues,
we suggest the report not be published and the users and other stakeholders be alerted of the impact. We
encourage that all findings be dealt with and the Final Audit Report be shared publicly for the transparency
of efforts and the advancement of security learnings within the industry.

Security Audit Report | Smart Contracts | Hilter 11
19 July 2025 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.





